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where
p=0, B=4-b% for b3
p=0, B=4-b0+2¢*/b for b3, ©)
p=1. B=1+4¢q—-b for bgpyy
p=1. B=1-¢g-1b for b3y

The combination of (7) and (8) can provide exact characteristic
values of the modified Mathieu functions with large range of m and

q.

C. Numerical Results

As a check of this method, we calculated 200 successive modes
for elliptical waveguides with different ellipticities. Table. T lists
the lowest 100 successive modes with ellipticities e = 0.1, 0.5
and 0.9. It is obvious from Table. 1 that the eigenmode sequence
is a function of ellipticity, i.e., elliptical waveguide with different
ellipticity has different eigenmode sequence. However, the main
mode of the waveguide is always TE.11. The first high order mode
is TEs11 when ¢ < 0.8546001 while it becomes TE.2; when ¢ >
0.8546001.

As a large number of numerical calculation are required to de-
termine the cutoff wavelength for a given mode and ellipticity, we
presented here the curvefitting expressions for the determination of
the cutoff wavelength of the lowest 10 order modes. The formulas
for the different modes and their ranges of validity are given in Table
1. Compared with previous works [5], [7], the expressions presented
here have higher accuracy and are valid for wider range of ellipticity.

IV. CONCLUSION

We can conclude from above discussion that: 1) the modified
continued fractional method suggested in this paper is suitable to
calculate the characteristic values of the modified Mathieu functions
with arbitrary order m and value ¢. 2) directly calculating the
parametric zeros of the modified Mathieu functions of the first kind
and their derivatives is an effective and easy way to determine the
cutoff wavelength for a given elliptical waveguide, and ensures no
omission of high order modes in the eigenmode sequence. 3) The
normalized cutoff wavelength for the lowest 100 successive modes
are presented, and the curvefitting expressions for the determination
of the cutoff wavelength of the lowest 10 order modes are given,
which have higher accuracy than previous calculations and are valid
for wider range of ellipticity.
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A New Electric Field Integral Equation for
Heterogeneous Dielectric Bodies of Revolution

Mark S. Viola

Abstract—In this paper, a novel electric field integral equation (EFIE)
is developed for rotationally-symmetric heterogeneous dielectric bodies.
This EFIE has several attractive features. Firstly, the azimuthal field
component has been eliminated in this formulation thereby reducing the
number of scalar unknowns from three to two. Secondly, it is a pure-
integral equation in which there are no terms involving derivatives of the
field components. Finally, this description is devoid of any highly singular
kernel which would require a principal-value evaluation of the associated
integral. These attributes render this formulation advantageous for both
computational and theoretical pursuits.

I. INTRODUCTION

Rigorous analysis of electromagnetic phenomena within hetero-
geneous dielectric regions commonly proceeds from an integral or
integro-differential equation for the electric field [1]-[5]. Construction
of such an EFIE relies upon the identification of an equivalent
volume density of polarization current. Inherently, this formulation
is a volume integral equation having three scalar unknowns. Thus,
its solution potentially poses a computationally intensive problem.
Additional complications arise when the EFIE is cast in the form
involving the electric dyadic Green’s function [6]-[9]. However,
the presence of certain symmetries allows the formulation of an
alternative integral equation that provides both computational and
theoretical advantages.

In this paper, a novel electric field integral equation (EFIE) is
developed for heterogeneous dielectric bodies of revolution. It is
assumed that the permittivity profile is azimuthally invariant. By
exploiting the prevailing symmetry, straightforward analysis yields
an EFIE having several appealing attributes. Firstly, the azimuthal
field component is eliminated from the formulation in favor of the
remaining (transverse) components. This reduction in the number of
scalar unknowns from three to two facilitates numerical solution via
standard techniques (e.g., the method of moments). Secondly, it is a
rigorous pure integral equation for the transverse field components as
opposed to an integro-differential one; no terms involving derivatives
of the field components appear. Finally, the singularities of the
kernels within this formulation are sufficiently weak, avoiding the
necessitation of a principal-value integral and the corresponding
depolarizing dyadic [7].

Throughout this paper, it shall be assumed that all media are
linear, isotropic and magnetically homogeneous. Furthermore, the
time dependence is harmonic (¢’**) and is suppressed.

II. VOLUME-SURFACE INTEGRAL EQUATION DESCRIPTION

Attention is focused on Fig. 1, which depicts a dielectric body of
revolution immersed in a uniform surround. A coordinate system is
established such that the z-axis coincides with the axis of revolution.
Open domain V', having boundary surface S with outer unit normal
i, is the region for the dielectric and is electrically characterized
through its permittivity profile e(#). In order to provide a well-posed
problem, it is assumed that the closed region 1" is regular and that ¢ is
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Fig. 1. Geometry for a heterogeneous dielectric body of revolution.

continuously differentiable in V' (see [1]). Additionally, it is assumed
that e(7) is axially symmetric. The background is a homogeneous
surround and is characterized by permittivity €,. System excitation
is provided by an impressed field E maintained by a source system
external to V.

Quantification of the electromagnetics for the situation described
above is provided by the EFIE

E(# = E'F) + (k2 + VV)I(7),7eV ¢))

where the electric Hertzian potential ii© is given by
= 6
it = [ 20 8) G By v, @
v

Here, 8¢ = ¢ — € is the contrast between permittivity within volume
V and that of its uniform surround, ks is the wavenumber within
the unbounded background, and G is the Green’s function for the
unbounded surround

—jksR
irR

where R = +/p” 4 p'* — 2pp’ cos (¢ — ¢') + (2 — 2')%. The integro-
differential equation as given by (1) and (2) may be converted
into a pure integral equation through a rigorous interchange of
integral and differential operations [6]. That converted form contains
a highly singular kernel such that evaluation of the integral requires
specification of an excluding region along with the corresponding
depolarizing dyadic [7]. In practice, the difficulty of managing the
singularity is usually circumvented by using one of the following
approaches: 1) a suitable spectral representation of the dyadic Green’s
function is used and followed by an interchange of spatial and
spectral operators, 2) application of a smooth testing operator in
the implementation of the method of moments naturally reduces the
strength of the singularity, and 3) the EFIE formulation is recast into
a volume-surface integral equation (VSIE). The latter approach is
taken here to facilitate the development of a new EFIE for the field
components transverse to ¢.

Conversion of (1) into a volume-surface EFIE is readily accom-
plished by using the relationship VG = —V'G, the product rule
V- (¢A) OV - A+V¢ A, and the divergence theorem [10]. Then
it is easy to show that

(&

G(F|7) = 3)

v 147 :—f ME(F')-&'G(FW')dS’
s

+ / lV’-(ﬁe(F')E(F'))G(r AV @)

where the legitimacy of differentiating under the 1ntegra1 was verified
in [6]. Application of Gauss’s Law V' ;. (e(7’ YE(7')) = 0 reveals

V' - (5e(FVEF)) =V - (e(FVE(F")) — e,V - E(7")

V'e(i‘") _—
TN - E(7) (%)

whereby substitution of (2), (4), and (5) into (1) yields the VSIE

8e(7')
€s

Bn =P+ [ {k B G

V'e(7) LB A7 '
T E(@)VG( )}dV
]{9 55&: )(E("’) AYVG (7Y dS' (6)

for all ¥ € V. Again, the interchange of differential and integral
operators used to obtain (6) is rigorously justified by [6]. Note that
for 7 in the open domain V/, all the integrals in (6) converge without
the necessity of a principal value evaluation. Although the surface
integral contains the term VG, its limit as ¥ — 7' € S exists
[111-[13]. Therefore, E may be continuously extended from open
domain V to the closed domain V by defining E on the boundary
as E(7, € S) = limzp E(7) where the limit is approached from
within V. Let T designate the unit dyadic. Then, for all 7 € S,
[I+ (r )‘fz] -E(®

€s

=E"(f)+/v{k2‘5€( oy

E@#)G(#7)

V'e( ) " ,
+ BV )}dV
%S‘Sﬁis 8T By - 2V G(AT) dS'

where the surface integral exists as a Cauchy principal value [12].
However, the normal component of this surface integral is inde-
pendent of the shape of the region which excludes the singularity
[111-{13]. Hence, the normal component of electric field, which is
implicated in (6), can be extended continuously from V to V without
need of a principal-value integral,

At this point, it should be emphasized that (6) is a general
expression which is valid for dielectric bodies of arbitrary shape
and permittivity. In the next section, specialization of (6) to axially-
symmetric bodies is considered.

III. DERIVATION OF A NEW VSIE FCR THE TRANSVERSE COMPONENTS

By exploiting the rotational symmetry of the permittivity e, it
is possible to formulate an EFIE that uncouples the azimuthal
(¢) component from the transverse ones. Following a development
analogous to that found in [14] for longitudinally-uniform dielectric
waveguides, the electric field is decomposed as E=Er +¢E¢ Now
by observing that the following relations hold for bodies of revolution

’fl;E-"Iﬁ-E’T
Ve -E=Vrye- Ep

where V1 = V — ¢(1/p)(8/0¢) is the transverse gradient operator,
it is seen that the azimuthal part of (6) may be written

Eur) =+ [ {12456 Beryaer)
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while the transverse part of (6) becomes

— . -0 Py = “a - ’ 7
ET(?>=E§~<F>+/ {A;—Ef U7~ 66} - Br(i)G(AIT)
v B
+ —ET(;,L))-EI (F’)V’TG(F[F”)}dI"

_j[ ET) B (7) - )V o GUAT') ST
s

€s

+,3k§/ be(r )Ew(r’)bin(@_ ¢ VG(FF ) dV.
JY 3
(7b)

Here E} =F - gi-;Efb is the transverse component of the impressed
electric field and p = qﬁ X Z.

Observe that if ET is found, then it could be substituted back into
(7a) thereby yielding an integral equation for F, alone. Yet. there is
apparent coupling between £, and Er through the last term in (7b).
Elimination of E4 in that term is possible by appealing to Gauss’s
law. From V' - (e(7')E(7')) = 0, the desired relationship is

19E,(7) V' e(#VE; (7)) o
o B0 (i) ' ®)
At first, it seems doubtful that (8) may be of any use since it is £, and
not its derivative with respect to ¢ that appears in (7b). However, by
invoking the azimuthal invariance of the permittivity ¢, an integration
by parts scheme may be used to alter (7b) into a form that coutains
the left side of (8). As a preliminary step to implement that scheime,
let a function G(r|r’) be defined such that

1 OG(FIP')
/7' a¢r -
Then, using (3), it is easy to see that

—sin (¢ — ¢")G(FP").

Gs(rlr'y = —p' /G(f’|f")sin (p—0')de'
— 1'
_47r]k5p

—3ksR —JhsR
eTIR R _ (muksRoy

where Ro = /p™ + (= — z)°. Observe that the term involving
e~?*:Ro ig simply an integration constant that has been chosen so
that G, is defined along the polar axis and satisties the radiation
condition.

Now applying integration by parts with respect to @' to the last
term in (7b) yields

/ ST B () sin (0 — &)G(F) Y
‘/'

€s
B Seli') a1 OELF)
= /‘ - G (A7 )p’ e

where use was made of the periodic and single-valued nature of both
Fy and G. Using (8) along with the relation
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it is found that, after invoking a three-dimensional integration by
parts, (9) becomes
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Finally, subsututing (10) 1nto (7b) and collecting terms leads to the
EFIE
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for all ¥ € V.

It is believed that (11) is a new formulation. Upon examination
of the kernels appearing in this EFIE, it is scen that the highest
order singularity is contributed by VrG. Terms involving G, and
its derivatives are continuous throughout the open region V. Hence,
all of the integrals in (11) are well defined and are independent of
the shape of the excluding region. The electric field may be extended
as a continuous function throughout the closed domain V by the
limuting procedure previously discussed. Aside from this, it is perhaps
of more practical importance that a4 great computational advantage
can be ganed by using (11) due to the reduction in the number of
unknowns. Solution o (11) may be substituted into (7a) resulting in
an EFIE for E,. Once (7a) is solved. the equivalent volume density
of polarization is known within V" and the scattered field external to
V" may then be compated using (1) and (2).

IV. CONCLUSIONS

An electric field integral equation for the field components trans-
verse 1o & has been derived for rotationally-symmetric heterogeneous
bodies. It is believed that the new formulation should be an asset for
both theoretical and computational endeavors. It enhances the effi-
ciency of numerical computations by yielding a formulation for which
the number of unknowns is reduced from three to two. Theoretically,
it affords the luxury of providing a rigorous pure-integral equation
description for which the singularities of the associated kernels are
weak. (Although the surface integral in (11) contains the term V7 G,
its limit as ¥ — 7' € S exists.) This avoids the necessitation of both
a principal-value integral whose value depends upon the shape of the
excluding region and the corresponding depolarizing dyadic.
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Computation of Proper and Improper Modes
in Multilayered Bianisotropic Waveguides

Francisco Mesa and Manuel Horno, Member, IEEE

Abstract—An efficient numerical method is presented to determine the
lIoci of both the proper and complex improper modes of a multilayered
bianisotropic planar waveguide. The propagation constants of the wave-
guide modes are expressed in terms of the zeros of a specific analytic
function. The use of appropriate integration zero-searching methods
is proposed since information about the possible number of complex
improper modes cannot be previously extracted. The general formulation
presented here has been applied to the study of the complex improper
modes of single and two-layer structures containing magnetized ferrites.
It has been found that the transition from physical proper to complex
improper modes is made throughout a nonphysical real improper mode.

I. INTRODUCTION

The grounded multilayered planar waveguide is the basic back-
ground of microstrip antennas, microstrip patch resonators and open
dielectric waveguides for integrated optics and millimeter-wave inte-
grated circuits [1], [2]. A topic which demands recent and increasing
interest is the effect of an increasing number of layers [3] and
substrate complexity [4] on the radiation pattern in antennas, the
resonant frequency of patch resonators and the propagation char-
acteristics in open dielectric waveguides. Computation and further
analysis of the Green’s function of the involved configuration can
become essential. This analysis is usually carried out by studying the
singularities of the Green’s function: the branch-point singularities
account for the free dipole radiation and the pole singularities for the
background radiation and guided modes [1]. Thus, finding the pole
singularities, which are located on a two-sheeted Riemann surface,
is a preliminary step in obtaining closed-form representations of the
Asymptotic Green’s Function (AGF) [3], [5]. Assuming that the upper
sheet of the Riemman surface is defined as fulfilling the radiation
condition, the poles located on this sheet (proper sheet) form a finite
and real subset which corresponds to the bounded modes guided
by the layered slab. On the other hand, the complex and infinite
subset of poles located on the bottom (improper) sheet, correspond
to unbounded modes which are usually called leaky modes [1].
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There are some works in the literature devoted to the computation
(and further application) of the proper and real improper modes
[6]. Complex improper modes are treated in [5], where the possible
significance of these complex modes is also discussed. Nevertheless,
to our knowledge the substrate of the considered structures was
assumed to be isotropic. Thus, the purpose of the present paper is
to provide an efficient numerical method to determine the location
of proper and improper waveguide modes in a planar waveguide
with layered bianisotropic substrate. The method is based on the
computation of the zeros of a specific analytic complex function
(with no poles or branch-cut singularities). The search for the zeros
of this function is carried out using an integral scheme which
enables analysis of the complex plane (determining the number of
zeros included within the closed integration contour) and accurate
computation of the zeros.

II. ANALYSIS

In this section, the dispersion relation of a bianisotropic layered
waveguide will be obtained. Note that this waveguide ranges from
a simple grounded/covered/slab dielectric waveguide to waveguides
with gyrotropic (semiconductor and/or ferrites biased by an arbitrarily
oriented external d.c. magnetic field) and/or chiral layered substrate.
The theory presented here is also applicable to those multilayered
planar waveguides whose upper and bottom boundary conditions can
be expressed as impedance or admittance dyads.

This work pointedly formulates the dispersion relation of the
generic waveguide under consideration in terms of the zeros of an
analytic function. This fact will be relevant in connection with the
zero-searching procedure since the usual methods work efficiently
when applied to analytic functions in the search region. The following
dependence of the electromagnetic field at the plane of the interfaces
(that is, the z,z components) X = (E,, E., H,, H.), is assumed:
X(z,y, z,t) = exp(—jwt)exp(—jke- p)X(y), where w is the
angular frequency, p = =za, + za. and ki = kza, + k.a,
is the wavevector. As is shown in [7], the X vector inside each
layer (denoted by the subscript ¢) is given in terms of a certain
exponential matrix and a certain reference value, that is: X, (y) =
exp (jw[Q].y) - X.(0) . The explicit form of each element of the
(4 x 4) jw[Q]. matrix as a function of the layer characteristics is
shown in [8].

Once fields at the upper interface of each layer are expressed in
terms of fields at the bottom interface of each layer, we can express
the field at the upper interface of the whole waveguide. X", in
terms of the field at the bottom interface of the waveguide, X®, by
applying the continuity condition of the X vector at each intermediate
interface. Thus, assuming that NV; is the total number of layers, the
following matrix relation is obtained: X* = [A]- X", where the [A]
matrix is given by [A] = fﬁl exp (jw{Q].h,) — h, is the height
of the i-th layer —.

The above matrix relation, together with the matrix impedance
relations of E; = (E..E.) and H, = (H,, H,) at the upper and
bottom interfaces of the waveguide, enables writing the following
matrix equations in terms of the (2 X 2)[A,;] submatrices of the [A]
matrix and the impedance matrices, [Z.} and [Z3]:

E! = [Au] - E} +[Ar] - HY )
HY = [AL]-EY + [Az] - H? @)}
E; = [Z.] - H 3)
E{ = [Z] - H;. @
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