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where

p = o, B=4–b for b~h

p=O, B=4–b+2q2/b for b~k

p=l. B=l+y–b for b~k+l
(9)

p=l. B= I–q–b for b~k~l

The combination of (7) and (8) can provide exact characteristic

values of the modified Mathieu functions with large range of m and

q.

C. Nume~ical Results

As a check of this method, we calculated 200 successive modes

for elliptical wave,guides with different ellipticities. Table. I lists

the lowest 100 successive modes with ellipticities e = 0.1, 0.5

and 0.9. It is obvious from Table. I that the eigenmode sequence

is a function of ellipticity, i.e., elliptical waveguide with different

ellipticit y has different eigenmode sequence. However, the main

mode of the waveguide is always TE.11. The first high order mode

is TE,l 1 when e < 0.8546001 while it becomes TE,21 when e >

0.8546001.

As a large number of numerical calculation are required to de-

termine the cutoff wavelength for a given mode and ellipticity, we

presented here the curvefitting expressions for the determination of

the cutoff wavelength of the lowest 10 order modes. The formulas

for the different modes and their ranges of validity are given in Table

11. Compared with previous works [5], [7], the expressions presented

here have higher accuracy and are valid for wider range of ellipticity.

IV. CONCLUSION

We can conclude from above discussion thati 1) the modified

continued fractional method suggested in this paper is suitable to

calculate the characteristic values of the modified Mathieu functions

with arbitrary order m and value q. 2) directly calculating the

parametric zeros of the modified Mathieu functions of the first kind

and their derivatives is an effective and easy way to determine the

cutoff wavelength for a given elliptical waveguide, and ensures no

omission of high order modes in the eigenmode sequence. 3) The

normalized cutoff wavelength for the lowest 100 successive modes

are presented, and the curvefitting expressions for the determination

of the cutoff wavelength of the lowest 10 order modes are given,

which have higher accuracy than previous calculations and are valid

for wider range of ellipticity.
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A New Electric Field Integral Equation for

Heterogeneous Dielectric Bodies of Revolution

Mark S. Viola

Abstract-In this paper, a novel electric field integral equation (EFIE)

is developed for rotationally-symmetric heterogeneous dielectric bodies.

This EFIE has several attractive features. Firstly, the azimuthal field
component has been eliminated in this formulation thereby reducing the

number of scalar unknowns from three to two. Secondly, it is a pure-
integral equation in which there are no terms involving derivatives of the
field components. Finally, this description is devoid of any highly singular
kernel which would require a principal-value evaluation of the associated

integral. These attributes render this formulation advantageous for both
computational and theoretical pursuits.

I. INTRODUCTION

Rigorous analysis of electromagnetic phenomena within hetero-

geneous dielectric regions commonly proceeds from an integral or

integro-differential equation for the electric field [1 ]–[5]. Construction

of such an EFfE relies upon the identification of an equivalent

volume density of polarization current. Inherently, this formulation

is a volume integral equation having three scalar unknowns. Thus,

its solution potentially poses a computationally intensive problem.

Additional complications arise when the EFIE is cast in the form

involving the electric dyadic Green’s function [6]–[9]. However,

the presence of certain symmetries allows the formulation of an

alternative integral equation that provides both computational and

theoretical advantages.

In this paper, a novel electric field integral equation (EFIE) is

developed for heterogeneous dielectric bodies of revolution. It is

assumed that the permittivity profile is azimuthally invariant. By

exploiting the prevailing symmetry, straightforward analysis yields

an EFIE having several appealing attributes. Firstly, the azimuthal

field component is eliminated from the formulation in favor of the

remaining (transverse) components. This reduction in the number of

scalar unknowns from three to two facilitates numerical solution via

standard techniques (e.g., the method of moments). Secondly, it is a

rigorous pure integral equation for the transverse field components as

opposed to an integro-differential one; no terms involving derivatives

of the field components appear. Finally, the singularities of the

kernels within this formulation are sufficiently weak, avoiding the

necessitation of a principal-value integral and the corresponding

depolarizing dyadic [7].

Throughout this paper, it shall be assumed that all media are

linear, isotropic and magnetically homogeneous. Furthermore, the

time dependence is harmonic (eJ-i ) and is suppressed.

II. VOLUME-SURFACE INTEGRAL EQUATION DESCRIPTION

Attention is focused on Fig, 1, which depicts a dielectric body of

revolution immersed in a uniform surround. A coordinate system is

established such that the z-axis coincides with the axis of revolution.

Open domain V, having boundary surface S with outer unit normal

fi, is the region for the dielectric and is electrically characterized

through its permittivity profile e(F’). In order to provide a well-posed

problem, it is assumed that the closed region ~ is regular and that c is
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Fig. 1. Geome@for aheterogeneous dielectric body of revolution.

continuously differentiablein V (see [l]). Additionally, it is assumed

that t(rv is axially symmetric. The background is a homogeneous

surround and is characterized by permittivity c,. System excitation

is provided by an impressed field fi; maintained by a source system

external to V.

Quantification of the electromagnetic for the situation described

above is provided by the EFIE

3(O = I?(3 + (k: + VV.)IT(7),FC v (1)

where the electric Hertzian potential fie is given by

/

6’(7’) G(Fl#)~(#) W’.17’(F) = y (2)
v

Here, & = 6 – e. is the contrast between permittivity within volume

V and that of its uniform surround, k. is the wavenumber within

the unbounded background, and G is the Green’s function for the

unbounded surround

G(F’I F’) = ~ (3)

where R = ~pz + p’2 – 2pp’ cos (+ – +’) + (z – Z’)2. The integro-

differential equation as given by (1) and (2) may be converted

into a pure integral equation through a rigorous interchange of

integral and differential operations [6]. That converted form contains

a highly singular kernel such that evaluation of the integral requires

specification of an excluding region along with the corresponding

depolarizing dyadic [7]. In practice, the difficulty of managing the

singularity is usually circumvented by using one of the following

approaches: 1) a suitable spectral representation of the dyadic Green’s

function is used and followed by an interchange of spatial and

spectral operators, 2) application of a smooth testing operator in

the implementation of the method of moments naturally reduces the

strength of the singularity, and 3) the EFIE formulation is recast into

a volume-surface integral equation (VSIE). The latter approach is

taken here to facilitate the development of a new EFIE for the field

components transverse to c#.

Conversion of (1) into a volume-surface EFIE is readily accom-

plished by using the relationship VG = –V’ G, the product rule

V. (~~) = q5V. ~+ V@. ~, and the divergence theorem [10]. Then

it is easy to show that

I

~~(~’) @#) . fi’G(71F”) dS’V.lle(?q=– y
s

+
/

~V’ . (&(F’)fi(?’’))G(flF”) W’ (4)
v f.

where the legitimacy of differentiating under the integral was verified

in [6]. Application of Gauss’s Law V’ ~(E(F’)~(F”)) = O reveals

v’ . (&(7’)E(#)) = v’ . (CUE) – Gv’ . i(7’)
V’4F’) . q.#,

= ‘s C(P)
(5)

whereby substitution of (2), (4), and (5) into (1) yields the VSIE

/{
~2 ~6(F’) ~(#)G(fl#)

F(F) .fii(F)+ . ~

1v’@;.fi(#)vqfl#)W’
+—

6(7’)

!

&(#) fl ~, . ‘/)vG(fi#) dS’
— y(()” (6)

s

for all F’ E V. Again, the interchange of differential and integral

operators used to obtain (6) is rigorously justified by [6]. Note that

for ?’ in the open domain V, all the integrals in (6) converge without

the necessity of a principal value evaluation. Although the surface

integral contains the term VG, its limit as F -+ F’ 6 S exists

[11]–[13]. Therefore, ~ may be continuously ex:ended from open

dom+tin V to the closed domain ~ by defining E on the boundary

as E(F. c S) = lim~+,z ~(F) where the limit is approached from

within V. Let ~ designate the unit dyadic. Then, for all F’ E S,

[

&(F) 17+~iiii.12(F)s
/{ ~2 “(F’) fi(#)fV(fl#)

–E’(F)+ .y—

v

}

V’C(7’) , jj(F.,)vG(fl#) (W’
+—

6(?”)

!

&(~’) j ;:,, . fi/)vG(fl#) M’
— & (

s

where the surface integral exists as a Cauchy principal value [12].

However, the normal component of this surface integral is inde-

pendent of the shape of the region which excludes the singularity

[11]–[13]. Hence, the normal component of electric field, which is

implicated in (6), can be extended continuously from V to ~ without

need of a principal-value integral.

At this point, it should be emphasized that (6) is a general

expression which is valid for dielectric bodies of arbitrary shape

and permittivity. In the next section, specialization of (6) to axially-

symmetric bodies is considered.

III. DERIVATION OF A NEW VSIE FC)RTHE TRANSVERSE COMPONENTS

By exploiting the rotational symmetry of the permittivity 6, it

is possible to formulate an EFIE that uncouples the azimuthal

(~) component from the transverse ones. Following a development

analogous to that found in [14] for longitudinally-uniform dielectric

waveguides, the electric field is decomposed as ~ = ET+@+. Now

by observing that the following relations hold for bodies of revolution

fi.~=fi.gT

VE. d= K7TE. dT

where VT = V – ~ ( I/p) (0/i9~) is the transverse gradient operator,

it is seen that the azimuthal part of (6) may be written

Ed (O = Eji (7) + J{kt~-+(d.fiT(#))G(FIF’)
v

1 (9G(flF’) ~v,V;4F) ~T(Ff)j ~p
+— 6(7’) 1

I
6E(7’)(&, (~f) . fi’)vTG(F\F’)dS’—

!

s &) E4(~:,) ~o~ (~ – @’)G(flF”) C@
+ .s—

v es

(7a)
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while the transverse part uf (6) becomes

ET(F) =E*(F)+
1{

, {1- @$} .&’(#)G(f17’)
~:~(hd =

~. .

+ v:e(F’)

}
.l?z (#) VTG(fl#) d~”

E(Ff)

—
I

I+(ET(;’) . /i’)v,G(rlF)ds’
s.

I

8C(F’)
+ ~L!: -— E@(~’)~in(qr – ~’)G(flF’)dt”.

L ~,
(7b)

Here ~~ = ~’ – ~13j is the transverse component of the impressed

electric field and E = ~ x 3.

Observe that if J% is found, then it could be substituted back into

(7a) thereby yielding an integral equation fur E@ alone. Yet. there is

apparent coupling between E@ and .@~ through the last term in (7b).

Elimination of Ed in that term is possible by appeahng to Gauss’s

law. From V’ . (e(i” )~( 7’ ) ) - (.), the desired relationship is

1 3E9(F’) =_ v’ C(?’’)l?f (7’)

v (%0’P )’
(8)~(,?l

At first, it seems doubtful that (8) maybe of any use since it is E. and

not its derivative with respect to @that appears in (7b). However, by

invoking the azimuthal invariance uf the permittivity c. an integration

by parts scheme may be used to alter (7b) into a form that contains

the left side of (8). As a preliminary step to implement that scheme.

let a function G, (r I# ) be defined such that

1 ~G.(FIF”) =

a@
–sin(q – q’)G(~?”).

P’

Then, using (3), it is easy to see that

G,(rl# )=-p’
./

G(717’) sin (~ – CD’)dI$’

—— *{,-M? _ ~-,w.}

where R. = /p’z + (: – z )2. Observe that the term invoking

e‘~ ~s‘o is simply an integmtion constat that has been chosen so

that G, is defined along the polar axis and satistres the radiation

condition.

Now applying integration by parts with respect to o’ to the last

term in (7b) yields

I
~E@(#)~iu(@ – ~’)G(il?’’)dI”’

v

-I

66(7’) 1 al!l?+(?”) ~T.,—— —G. (~F’)F—
ad’

(9)
~,. z.

where use was made of the periodic and single-valued nature of both

E4 and G,. Using (8) along with the relation

()

&( F’) _ WC(F)
C(F’)V’ — —

c.@’f) — 6(7/)

it is found that, after invoking a three-dimensional mtegra[ion by

parts, (9) becomes

/

66(7’)
—Ed(F’)sin(~ – d’)G(f17’)d~-’

1’ ~s

‘/

~~(~’)(&.(#) . fi’)G, (fl#)ds’
s c.

I

“ ~~f(~’) . jjT(,#)G, (~#) d~-’—
v C(7’)

—
/

~&~’) . f7j, G5(fl#)dIT’. (lo)
~- es

Finally, subsututmg (10) mto (7b) and collecting terms leads to the

EFIE

}
. I%(F’ ) w-’

&?j-(7’)[FTG(~F’)

for all ?’ C 17.

It is beheved that (11) is a new formulation. Upon examination

of the kernels appearing in this EFIE, it is seen that the highest

order singukrrity is contributed by VT G. Terms involving G. and

its derivatives are continuous throughout the open region V. Hence,

all of the integrals in (11) are well defined and are independent of

the shape of the excluding region. The electric tield may be extended

as a continuous function throughout the closed domain ~ by the

lirnning prucedure previously discussed. Aside from this, it is perhaps

of more practical importance that a great computational advantage

can be gamed by using (11) due to the reduction in the number of

trnkno wns. Solution 10 (11) may be substituted into (7a) resulting in

an EFIE for Eu, Once (7a) is solved. the equivalent volume density

of polarization is known within t 7 and the scattered field external to

~- mtiy theu be computed using (1) and (2).

IV. CONCLUSIONS

An ele$tric tield integml equation for the tield components trans-

verse to d has been delived for rotationally-symmetric heterogeneous

bodies. It is believed that the new formulation should be an asset for

both theoretical aud computational endeavors. It enhances the effi-

ciency of numerical computations by yielding a formulation for which

the number of unknowns is reduced from three to two. Theoretically,

it affords the luxury of providing a rigorous pure-integral equation

description for which the singularities of the associated kernels are

weak. (Although the surface integral in (11) contains the term VT G,

its limit as 7’- 7‘ E S exists.) This avoids the necessitation of both

a principal-value integral whose value depends upon the shape of the

excluding regicm and the corresponding depolarizing dyadic.
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Computation of Proper and Improper Modes

in Multilayered Bianisotropic Waveguides

Francisco Mesa and Manuel Homo, Member, IEEE

Abstract-An efficient numerical method is presented to determine the

loci of both the proper and complex improper modes of a multilayered
bianisotropic planar waveguide. The propagation constants of the wave-

guide modes are expressed in terms of the zeros of a specific analytic
function. The use of appropriate integration zero-searching methods

is proposed since information about the possible number of complex
improper modes cannot be previously extracted. The general formulation
presented here has been applied to the study of the complex improper

modes of single and two-layer structures containing magnetized ferrites.

It has been found that the transition from physical proper to complex
improper modes is made throughout a nonphysical real improper mode.

I. INTRODUCTION

The grounded multilayered planar waveguide is the basic back-

ground of microstrip antennas, microstrip patch resonators and open

dielectric waveguides for integrated optics and millimeter-wave inte-

grated circuits [1], [2]. A topic which demands recent and increasing

interest is the effect of an increasing number of layers [3] and

substrate complexity [4] on the radiation pattern in antennas, the

resonant frequency of patch resonators and the propagation char-

acteristics in open dielectric waveguides. Computation and further

analysis of the Green’s function of the involved configuration can

become essential. This aualysis is usually carried out by studying the

singularities of the Green’s function: the branch-point singularities

account for the free dipole radiation and the pole singularities for the

background radiation and guided modes [1]. Thus, finding the pole

singularities, which are located on a two-sheeted Riemann surface,

is a preliminary step in obtaining closed-form representations of the

Asymptotic Green’s Function (AGF) [3], [5]. Assuming that the upper

sheet of the Riemman surface is defined as ftdfilling the radiation

condition, the poles located on this sheet (proper sheet) form a finite

and real subset which corresponds to the bounded modes guided

by the layered slab. On the other hand, the complex and infinite

subset of poles located on the bottom (improper) sheet, correspond

to unbounded modes which are usually called leaky modes [1].
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There are some works in the literature devoted to the computation

(and further application) of the proper and real improper modes

[6]. Complex improper modes are treated in [5], where the possible

significance of these complex modes is also discussed. Nevertheless,

to our knowledge the substrate of the considered structures was

assumed to be isotropic. Thus, the purpose of the present paper is

to provide an efficient numerical method to determine the location

of proper and improper waveguide modes in a planar waveguide

with layered bianisotropic substrate. The method is based on the

computation of the zeros of a specific analytic complex function

(with no poles or branch-cut singularities). The search for the zeros

of this function is carried out using an integral scheme which

enables analysis of the complex plane (determining the number of

zeros included within the closed integration contour) and accurate

computation of the zeros.

11. ANALYSIS

In this section, the dispersion relation of a bianisotropic layered

waveguide will be obtained. Note that this waveguide ranges from

a simple grounded/coverecf/slab dielectric waveguide to waveguides

with gyrotropic (semiconductor andhr ferrites biased by an arbitrarily

oriented external d.c. magnetic field) and/or chiral layered substrate.

The theory presented here is also applicable to those multilayered

planar waveguides whose upper and bottom boundary conditions can

be expressed as impedance or admittance dyads.

This work pointedly formulates the dispersion relation of the

generic waveguide under consideration in terms of the zeros of an

analytic function. This fact will be relevant in connection with the

zero-searching procedure since the usual methods work efficiently

when applied to analytic functions in the search region. The following

dependence of the electromagnetic field at the plane of the interfaces

(that is, the x, z components) X = (Ez, E,, Hz, Hz ), is assumed:

X(z, g, z,t) = exp(–jtit)exp(-jkt . p) X(y), where u is the

angular frequency, p = xa. + za, and kt = k~a~ + Ic, a,

is the wavevector. As is shown in [7], the X vector inside each

layer (denoted by the subscript i) is given in terms of a certain

exponential matrix and a certain reference value, that is: X,(y) =

exp (jw[Q]t y) . X,(0) The explicit form of each element of the

(4 x 4) juJ[Q], matrix as a function of the layer characteristics is

shown in [8].

Once fields at the upper interface of each layer are expressed in

terms of fields at the bottom interface of each layer, we can express

the field at the upper interface of the whole waveguide, X“, in

terms of the field at the bottom interface of the waveguide, X5, by

applying the continuity condition of the X vector at each intermediate

interface. Thus, assuming that Nt is the total number of layers, the

following matrix relation is obtained: X“ = [A] . X*, where the [A]
matrix is given by [A] = ~~~1 exp (jti[Q] ,k, ) — h, is the height

of the i-th layer —.

The above matrix relation, together with the matrix impedance

relations of Et = ( Ex, E,) and HL = (H., H. ) at the upper and

bottom interfaces of the waveguide, enables writing the following

matrix equations in terms of the (2 x 2)[A,, ] submatrices of the [A]

matrix and the impedance matrices, [Z u] and [Z6]:

E? = [All] E: + {ALz] . H: (1)

H: = [Az, ] . E; + [A,2] . H? (2)

E: = [Zu] H: (3)

E: = [Zb] . H;. (4)
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